Lessons on Applying Automated Recommender Systems to Information-Seeking Tasks

نویسندگان

  • Joseph A. Konstan
  • Sean M. McNee
  • Cai-Nicolas Ziegler
  • Roberto Torres
  • Nishikant Kapoor
  • John Riedl
چکیده

Automated recommender systems predict user preferences by applying machine learning techniques to data on products, users, and past user preferences for products. Such systems have become increasingly popular in entertainment and e-commerce domains, but have thus far had little success in information-seeking domains such as identifying published research of interest. We report on several recent publications that show how recommenders can be extended to more effectively address informationseeking tasks by expanding the focus from accurate prediction of user preferences to identifying a useful set of items to recommend in response to the user's specific information need. Specific research demonstrates the value of diversity in recommendation lists, shows how users value lists of recommendations as something different from the sum of the individual recommendations within, and presents an analytic model for customizing a recommender to match user information-seeking needs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Context-Aware Recommender Systems: A Review of the Structure Research

 Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...

متن کامل

Improving Accuracy of Recommender Systems using Social Network Information and Longitudinal Data

The rapid development of technology, the Internet, and the development of electronic commerce have led to the emergence of recommender systems. These systems will assist the users in finding and selecting their desired items. The accuracy of the advice in recommender systems is one of the main challenges of these systems. Regarding the fuzzy systems capabilities in determining the borders of us...

متن کامل

Reducing Retrieval Time in Automated Storage and Retrieval System with a Gravitational Conveyor Based on Multi-Agent Systems

The main objective of this study is to reduce the retrieval time of a list of products by choosing the best combination of storage and retrieval rules at any time. This is why we start by implementing some storage rules in an Automated Storage/Retrieval System (Automated Storage and Retrieval System: AS/RS) fitted with a gravity conveyor while some of these rules are dedicated to storage and ot...

متن کامل

Merging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems

In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...

متن کامل

Providing a model based on Recommender systems for hospital services (Case: Shariati Hospital of Tehran)

Background and objectives: In the increasingly competitive market of the healthcare industry, the organizations providing health care services are highly in need of systems that will enable them to meet their clients' needs in order to achieve a high degree of patient satisfaction. To this end, health managers need to identify the factors affecting patient satisfaction focus. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006